Datasets
Download Datasets
An ImageTagger API was introduced in v0.3.5. See How to Download ImageTagger Datasets for more information.
Structure
Each top-level dataset is a named submodule, e.g. MLHelper.datasets.bitbots
. These Submodules have datasets, in the case of bitbots
they are split into TRAIN
and TEST
.
Bit-Bots
In order for Bit-Bots datasets to work you need to set the environment variable ROBO_AI_DATA
:
export ROBO_AI_DATA=/path/to/root
All Bit-Bots datasets need to reside in that directory.
Available TRAIN
datasets:
bitbots.TRAIN.LEIPZIG
bitbots.TRAIN.NAGOYA
bitbots.TRAIN.IRAN
bitbots.TRAIN.MONTREAL
bitbots.TRAIN.BITBOTSLAB
bitbots.TRAIN.CHALLENGE_2018
bitbots.TRAIN.ALL
Available TEST
datasets:
bitbots.TEST.NAGOYA
bitbots.TEST.WOLVES
bitbots.TEST.IRAN
bitbots.TEST.BITBOTSLAB_CONCEALED
bitbots.TEST.CHALLENGE_2018
bitbots.TEST.ALL
Available TEST_NOISED
datasets (i.e. noised versions of test images):
bitbots.TEST_NOISED.NAGOYA
bitbots.TEST_NOISED.WOLVES
bitbots.TEST_NOISED.REAL
bitbots.TEST_NOISED.CHALLENGE_2018
bitbots.TEST_NOISED.ALL
For an explanation of CHALLENGE_2018
see Towards Real-Time Ball Localization using CNNs by Speck et al.
Bit-Bots — Example
import MLHelper as H
from MLHelper.datasets.bitbots import BallDatasetHandler
# creates a dataset object with batch size 8 for alle datasets that were included in 'CHALLENGE 2018'
dat = H.ImgReader(BallDatasetHandler.TRAIN.CHALLENGE_2018, batch_size=8)